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SUMMARY

Compared to the Navier–Stokes equation-based approach, the method of lattice Boltzmann Equation
(LBE) o�ers an alternative treatment for �uid dynamics. The LBE method often employs uniform
lattices to maintain a compact and e�cient computational procedure, which makes it less e�cient
to perform �ow simulations when there is a need for high resolution near the body and=or there
is a far-�eld boundary. To resolve these di�culties, a multi-block method is developed. An accurate,
conservative interface treatment between neighboring blocks is adopted, and demonstrated that it satis�es
the continuity of mass, momentum, and stresses across the interface. Several test cases are employed to
assess accuracy improvement with respect to grid re�nement, the impact of the corner singularity, and
the Reynolds number scaling. The present multi-block method can substantially improve the accuracy
and computational e�ciency of the LBE method for viscous �ow computations. Copyright ? 2002 John
Wiley & Sons, Ltd.

KEY WORDS: viscous �uid �ow; lattice Boltzmann method; multi-block strategy; grid re�nement;
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1. BACKGROUND OF THE LATTICE BOLTZMANN METHOD

Recently, there has been much progress in developing the method of the lattice Boltzmann
equation (LBE) [1–3] as an alternative, computational technique for solving complex �uid
dynamic systems [4; 5]. Adopting a macroscopic method for computational �uid dynamics
(CFD), the variables of interest, such as velocity u and pressure p, can be obtained by
solving the Navier–Stokes (NS) equations [6–8]. In the LBE approach, one solves the kinetic
equation for the particle mass distribution function f(x; �; t), and the macroscopic quantities
(such as mass density � and momentum density �u) can then be obtained by evaluating the
hydrodynamic moments of the distribution function f.
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Figure 1. A 2-D, nine-velocity lattice (D2Q9) model.

A popular kinetic model is the Boltzmann equation with the single relaxation time approx-
imation, the so-called BGK model [9]:

@f
@t
+ � · ∇f=−1

�
(f − f(eq)) (1)

where � is the particle velocity, f(eq) is the equilibrium distribution function (the Maxwell–
Boltzmann distribution function), and � is the relaxation time.
To solve for f numerically, Equation (1) is �rst discretized in the velocity space using a

�nite set of velocities {��} without a�ecting the conservation laws [5; 9–11],
@f�
@t
+ �� · ∇f�=−1

�
(f� − f(eq)� ) (2)

In the above equation, f�(x; t)≡f(x; ��; t) is the distribution function associated with the �th
discrete velocity �� and f

(eq)
� is the corresponding equilibrium distribution function. The nine-

bit square lattice model, which is often referred to as the D2Q9 model (Figure 1) has been
successfully used for simulating 2-D �ows. For the D2Q9 model, we use e� to denote the
discrete velocity set and we have

e0 = 0;
e� = c(cos((�− 1)�=4); sin((�− 1)�=4)) for �=1; 3; 5; 7

e� =
√
2c(cos((�− 1)�=4; sin((�− 1)�=4)) for �=2; 4; 6; 8

(3)

where c= �x=�t, �x and �t are the lattice spacing and the time step size, respectively. The
equilibrium distribution for the D2Q9 model is in the form of

f(eq)� =�w�

[
1 +

3
c2
e� · u + 9

2c4
(e� · u)2 − 3

2c2
u · u

]
(4)
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where w� is the weighting factor given by

w�=



4=9; �=0
1=9; �=1; 3; 5; 7
1=36; �=2; 4; 6; 8

(5)

With the discretized velocity space, the density and momentum �uxes can be evaluated as

�=
8∑
k=0
f�=

8∑
k=0
f(eq)� (6a)

and

�u=
8∑
k=1
e�f�=

8∑
k=1
e�f(eq)� (6b)

The speed of sound in this model is cs=c=
√
3 and the equation of state is that of an ideal

gas,

p=�c2s (7)

Equation (2) can be further discretized in space and time. The completely discretized form
of Equation (1), with the time step �t and space step e��t, is:

f�(xi + e��t; t + �t)− f�(xi ; t)=−1
�
[f�(xi ; t)− f(eq)� (xi ; t)] (8)

where �= �=�t, and xi is a point in the discretized physical space. The above equation is the
discrete lattice Boltzmann equation [1–3] with BGK approximation [9]. The viscosity in the
NS equation derived from Equation (8) is

�=(�− 1=2)c2s �t (9)

This choice for the viscosity makes formally the LBGK scheme a second order method for
solving incompressible �ows [10; 11]. The positivity of the viscosity requires that �¿1=2.
Equation (8) can be computed by the following sequence:

(i) collision step: f̃�(xi ; t + �t)=f�(xi ; t)−
1
�
[f�(xi ; t)− f(eq)� (xi ; t)] (10a)

(ii) streaming step:f�(xi + e��t; t + �t)= f̃�(xi ; t + �t) (10b)

where ∼ denotes the post-collision state of the distribution function. It is noted that on the
left-hand-side (LHS) of Equation (10a) and the right-hand-side (RHS) of the Equation (10b)
the time level is t + �t. This is di�erent from the notation for the post-collision state used
previously in Reference [12]. In any single-block computation, the speci�c identi�cation of
the time level for the post-collision state is not important since the completion of an LBE
computational step is at the end of the streaming step. In the present multi-block computation,
the transfer of information between neighboring blocks requires an accurate match in the time
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level. Since the post-collision state variables are obtained after a physical relaxation process,
it is appropriate to associate the time t + �t to the variables of this state. Such a change
in the notation does not a�ect the derivation for the post-collision value f̃�(xi ; t + �t) given
in Reference [12]. It is noted that the collision step is completely local and the streaming
step takes very little computational e�ort. Equation (10) is explicit, easy to implement, and
straightforward to parallelize.
Those inherent advantages of the LBE method necessitate the use of a regular lattice struc-

ture (such as a square lattice or hexagonal lattice) with uniform spacing. This is in direct
contrast to the many �nite di�erence=volume=element methods in which body-�tted coordi-
nates are used and the grid stretching can be easily applied. However, it should be noted
that there has also been a growing interest in the macroscopic method to employ the Carte-
sian grid for complex �ow problems [13; 14]. A challenge of the uniform grid is to of-
fer high resolution near a solid body and to place the outer boundary far away from the
body without wasting the grid resolution elsewhere. In order to use the regularly spaced
lattice while developing the capability to place the outer boundary far away, it is desir-
able to divide the computational domain into a number of grid blocks so that within each
block uniform lattice spacing can be used. Again, such a multi-block approach has been ac-
tively employed in the Navier–Stokes equation methods with both Cartesian and curvilinear
coordinates.
This paper describes a multi-block strategy for the LBE method. In each block, con-

stant value of �x= �y= �t is used. The information exchange on the interface between
the neighboring blocks of di�erent lattice spacing �x for the primary variables f�’s is im-
plemented to ensure the mass conservation and the continuity of stresses between
blocks.
Several studies addressing the multi-block techniques have recently appeared in the litera-

ture. In particular, Reference [15] �rst reports an approach with which the present study shares
a common concept. However, as will be presented later, details of the approaches employed
in Reference [15] and in this study are di�erent. In Reference [15], values of the distribution
functions on the coarse grid, transmitted from regions of �ner patches, including gradients of
hydrodynamic variables, are calculated with second-order interpolation in space and time in
the boundary nodes of the �ne grid. A more accurate approach will be proposed along with
a detailed computational procedure to enable the research community to consider the entire
approach with adequate details.
After the completion of the present work, two papers were published: References [16; 17].

In Reference [16], the coarse base grid covers the entire physical domain, and the �ner grid
blocks are placed at regions where local grid re�nement is desirable. The simulation is �rst
carried out on the base grid level at a smaller relaxation time, allowing a rapid propagation
of boundary information throughout the entire domain. At a later time, the computation of
the �ne grid variables is initiated. The dependent variables on both grid levels are, then,
advanced in time simultaneously with the �ne grid boundary conditions obtained from the
base grid solution at the grid interface. Reference [17] is based on multiple nested lattices
with increasing resolution. The discrete velocity Boltzmann equation is solved numerically
on each sub-lattice and interpolation between the interfaces is carried out in order to couple
the computations in di�erent blocks. Compared to the above-cited references, in the present
method, the di�erent grid size blocks are not overlapped between each other, and blocks are
connected only through the interface.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120
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In the present e�ort, the conservative properties and block-to-block coupling are directly
investigated. Furthermore, a systematic e�ort has been made to both accuracy and e�ciency
aspects. Several test cases have been employed. A lid-driven cavity �ow is computed using a
single block with uniform grid and the present multi-block method. The results are compared
with published benchmark results. A channel �ow with a parabolic velocity pro�le at the inlet
over an asymmetrically placed cylinder at Re=100 (based on the average incoming velocity)
is computed next using the multi-block method. Finally, �ow over NACA0012 airfoil at
Re=500–5000 is computed. The present study demonstrates that the multi-block strategy can
greatly improve the computational e�ciency of the LBE method. Important computational
issues, such as conservative properties between grid blocks, accuracy assessment with respect
to grid re�nement, the presence of the corner singularity, and the implications of the Reynolds
number, have not been adequately addressed in the literature, and will be presented in this
work.

2. BASICS OF THE MULTI-BLOCK STRATEGY IN THE LBE METHOD

To illustrate the basic idea, a two-block system (a coarse and a �ne, as shown in Figure 2(a))
is considered in the derivation for the interfacial information exchange. The ratio of the lattice
space between the two-grid system is

m= �xc=�xf (11)

For a given lattice size �x, the viscosity of the �uid is

�=(2�− 1)�xc=6 (12)

In order to keep a consistent viscosity, and thus Re, in the entire �ow �eld involving di�erent
lattice sizes, the relation between relaxation times, �f, on the �ne grid, and �c, on the coarse
gird, must obey the following rule:

�f=
1
2
+m

(
�c − 1

2

)
(13)

Figure 2. (a) Interface structure between two blocks of di�erent lattice spacing. (b) Flow chart of the
computational procedure in the present multi-block method.
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Figure 2. Continued.

for c=1. To keep the variables and their derivatives continuous across an interface between
two di�erent grids, a consistent and accurate relationship for the probability density function
in the neighboring grid blocks must be developed. The following summarizes the key elements
in the derivation for the information exchange across the interface.
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It is noted that,

f�(x; t)=f(eq)� (x; t) + f(neq)� (x; t) (14)

where f(neq) is the non-equilibrium part of the distribution function based on which the
deviatoric stresses are evaluated. The collision step (Equation (10a)) gives

f̃�(xi ; t + �t)=
(
1− 1

�

)
f�(xi ; t) +

1
�
f(eq)� (xi ; t) (15)

Substituting Equation (14) into Equation (15) leads to

f̃�(xi ; t + �t) =
(
1− 1

�

)
[f(eq)� (xi ; t) + f(neq)� (xi ; t)] +

1
�
f(eq)� (xi ; t)

=f(eq)� (xi ; t) +
�− 1
�

f(neq)� (xi ; t) (16)

Denoting the coarse-grid quantities with the superscript c and �ne-grid quantities with the
superscript f, the post-collision step gives

f̃(c)� =f(eq;c)� +
�c − 1
�c

f(neq;c)� (17)

Similarly,

f̃(f)� =f(eq;f)� +
�f − 1
�f

f(neq;f)� (18)

Since the velocity and density must be continuous across the interface between the two grids,
from Equation (4), it is seen that

f(eq;c)� =f(eq;f)� (19)

To maintain continuity in deviatoric stresses, in the 2-D case,

�ij=
(
1− 1

2�

)
8∑
�=1
f(neq)� (e�ie�j − 1

2 e� · e��ij) (20)

it is obvious that one requires(
1− 1

2�c

)
f(neq;c)� =

(
1− 1

2�f

)
f(neq;f)� (21)

or

f(neq;c)� =m
�c
�f
f(neq;f)� (22)

Substituting Equation (22) into Equation (17) one obtains

f̃(c)� =f(eq;c)� +m
�c − 1
�f

f(neq;f)� (23)
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Using Equations (18) and (19), the above becomes

f̃(c)� =f(eq;f)� +m
�c − 1
�f

�f
�f − 1[f̃

(f)
� − f(eq;f)� ]=f(eq;f)� +m

�c − 1
�f − 1[f̃

(f)
� − f(eq;f)� ] (24)

In transferring the data from the coarse grids to the �ne grids, one similarly obtains

f̃(f)� =f(eq;c)� +
�f − 1
m(�c − 1)[f̃

(c)
� − f(eq;c)� ] (25)

Equations (24) and (25) were �rst given in Reference [15]. On the interface between two
blocks, there are m values of f̃(f)� needed for each f(eq;c)� and f̃(c)� . Thus, spatial and temporal
interpolation procedures for the values of f̃(eq;c)� and f̃(c)� on the �ne-grid lattice are used to
complete the evaluation of f̃(f)� .

3. THE INTERFACE STRUCTURE AND COMPUTATIONAL PROCEDURE

The typical interface structure is shown in Figure 2(a). The line MN is the �ne block bound-
ary, while the line AB is the coarse block boundary. The coarse block boundary is in the
interior of the �ne block, and the �ne block boundary is in the interior of the coarse block.
This arrangement of the interface is convenient for the information exchange between two
neighboring blocks. For example, grid Q is an interior lattice node of the coarse block. After
the collision step, the values of incoming distribution functions f̃2(t

n+1; XD); f̃3(t
n+1; XE) and

f̃4(t
n+1; XF) from boundary nodes D, E, and F, respectively, are needed in order to obtain

f2(tn+1; XQ), f3(tn+1; XQ), and f4(tn+1; XQ) at the end of steaming step, since other components
of f�(tn+1; XQ); (�=1; 5; 6; 7; 8) are obtained from advecting the neighboring post-collision
values of f̃� in the interior nodes of the coarse block. For the same reason, the �ne block
boundary MN is located in the interior of the coarse block. However, on the �ne block bound-
ary MN, there is no information on the nodes denoted by the solid symbol • in Figure 2(a);
it must be obtained through spatial interpolation based on the information at the nodes de-
noted by the open symbol ◦ on the line MN. To eliminate the possibility of spatial asymmetry
caused by interpolations, a symmetric, cubic spline �tting is used for spatial interpolation of
f̃� on the �ne block boundary,

f̃(x)= ai + bix + cix2 + dix3; xi−16x6xi; i=1; : : : ; n (26)

where the constants (ai; bi; ci; di) are determined by using the continuity of the nodal conditions
of f;f′; f′′ and suitable end conditions (such as zero second derivative for f). We found that
it is very important to maintain the spatial symmetry in the interpolation along the interface.
Figure 2(b) shows the �ow chart of the computational procedure for the multi-block cal-

culation. It is noted that in addition to the spatial interpolation, there is a need for temporal
interpolation on all nodes at the �ne block boundary MN in order to obtain f̃�(t

n+1=2;MN).
Here a three-point Lagrangian formula is used.

y(t)=
3∑
k=1
yk


∏
j=1
j �=k

t − ti
tk − tj


 (27)
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Figure 3. Block layout for a 2-D cavity. Lattice spacing is reduced by a factor of 8 for graphical clarity.

4. RESULTS AND DISCUSSIONS

Several well-documented �ow problems are selected to highlight the performance of the
present method. In all cases, the boundary condition for f� in the solid region near a wall is
obtained using the formulations given in Reference [12] for a curved geometry.

4.1. Lid-driven cavity �ow

The lid-drive cavity �ow has been extensively used as a benchmark solution to test the
accuracy of a numerical method. In this �ow, two singular points at the upper corners of the
lid require high resolution to obtain satisfactory stress distribution near the corner points. To
assess the LBE results, the benchmark solutions of Reference [18] are used for comparison.
The computations are carried out using (i) a single-block with uniform lattice (129× 129)

with the walls placed halfway between lattices, and (ii) a multi-block whose layout is shown
in Figure 3. For the multi-block case, in the two upper corner regions, the grid resolution
is increased by a factor of 4. For Re=100, the relaxation time is �c=0:56 for the coarse-
grid block and �f=0:74 for the �ne-grid block. The upper wall velocity is U =0:0156. The
initial condition for density is unity and that for velocity is zero. The streamlines shown in
Figure 4 are obtained from the single block solution and the pattern is not discernable from
those of the multi-block solution. The positions of the centers of the primary vortices are
(0.6154, 0.7391) and (0.6172, 0.7390) for uniform grid and multi-block solutions respectively,
compared well with the value (0.6172, 0.7344) from Reference [18]. The u- and v-components
of the velocity along the vertical line and horizontal line through the geometry center are
shown in Figure 5(a) and (b), respectively. It is seen that while the single block method with
129× 129 lattices can capture most of the physical variables satisfactorily, the multi-block
method can improve the numerical accuracy. Figure 6 shows the pressure contour from the
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108 D. YU ET AL.

Figure 4. Streamlines in the cavity �ow at Re=100.

Figure 5. (a) Comparison of u-velocity along the vertical line through geometric center. (b) Comparison
of velocity between present results and those in Reference [18].

single-block computation. Because of the singularity at the upper corners, the density contours
exhibit noticeable oscillations due to the insu�cient resolution near singularities. Figure 7
shows the pressure contours obtained from the multi-block solution. Signi�cant improvement
in the smoothness of the solution for the pressure �eld over that of the single block solution
is observed.
In an NS solver for incompressible �ows, because of the decoupling of thermodynamic

pressure and velocity �eld, it is crucial to maintain the mass conservation of the entire �ow

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120
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Figure 6. Pressure contours in the cavity �ow from the single-block LBE simulation.

Figure 7. Pressure contours in the cavity from multi-block LBE solution.
(For the circled region, see Figure 8).

domain. This issue becomes more critical when the multi-block method is used [8; 19]. Also
for incompressible �ows, the pressure is arbitrary up to a constant. Hence coupling the pressure
term while maintaining the mass �ux conservation is very important. Generally speaking,
it is di�cult to maintain simultaneously the continuity of mass, momentum, and stresses
across the interface between neighboring blocks because interpolations are applied to each

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120



110 D. YU ET AL.

Figure 8. Enlarged view of pressure contour in the circled region in Figure 7 near the intersection of
three blocks. The �gure demonstrates that the block interface and corner and well handled.

dependent variable. In the present multi-block LBE method, the continuities of mass and
stresses are ensured through the use of Equations (24) and (25). The most important point is
that interpolations are only applied to fi’s along the interface and this automatically ensures
the consistency in the transfer of various �ux terms across the interface.
To validate the above arguments, pressure, shear stress, mass �ux and momentum �ux near

the block interfaces are examined next. Figure 8 shows a local, enlarged view of the pressure
contour around an interface corner point indicated by the circle in Figure 7. Clearly, the
pressure is rather smooth across the interface with the coarse-to-�ne grid size ratio of m=4.
Figures 9–11 show the contours of shear stress, mass �ux, and momentum �ux �u2x . It is
seen that these physical quantities are all smooth across the interface.
To demonstrate this issue more clearly, macroscopic physical quantities on one part of the

interface (i.e. line A–B in Figure 3) are plotted in Figures 12–17. After the streaming step
there is no physical value on the interface for the �ne grid. Here we use a second order
extrapolation to obtain the �ne grid value on the interface. Figures 12–15 show that mass
and momentum �uxes match very well between the �ne- and coarse-grid. Figure 16 shows
the shear stress pro�le. In most parts of the interface the �ne- and coarse-grid solutions agree
very well with each other. The discrepancy appears near the upper wall. It is noted that in the
�ne-grid blocks, the top moving wall is located half-way between two horizontal, �ne-grid
lattices with a distance of �f�xf=0:5�xf. In the coarse-grid block, the distance between the
wall to the nearest lattice in the �uid region is �c�xc=0:5�xf=0:5�xc=4=0:125�xc for m=4.
This mismatch (�f �=�c) will result in di�erent truncation errors in the boundary condition
for fi’s. This subsequently a�ects the accuracy of the shear stress near the corner of the block
interface and the wall. The same problem also appears in Figure 17 for pressure. The behavior
of the solution, however, can be easily improved by using a set of uniform-sized �ne grids
for the �uid region near the entire upper wall.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120
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Figure 9. Shear stress contour. Solid and dash lines represent positive and negative values, respectively.

Figure 10. Contour of x-component mass �ux �ux. Solid and dash lines represent positive
and negative values, respectively.

4.2. Channel �ow over an asymmetrical placed cylinder at Re=100

Sch�afer and Turek [20] reported a study of a laminar �ow over a circular cylinder placed
asymmetrically inside a channel. The cylinder center to the upper wall distance is 4.2 cylin-
der radii, and the cylinder center to the lower wall distance is 4.0 radii. In the present LBE
computation, two grid sizes are used with the coarse-to-�ne lattice spacing ratio m=4 and

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120
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Figure 11. Contour of momentum �ux in the x-direction � · u2x .

Figure 12. The x-component of the mass �ux �ux=(�0U ) on the interface AB de�ned in
Figure 3. In Figures 12–15, �0 = 1and U =0:0156.

the �ow domain is divided into �ve blocks. The �ner grid block is placed around the cylin-
der as shown in Figure 18. The radius of the cylinder, r, equals 20 lattice spacing in the
�ne block. The total number of lattices in coarse-grid blocks is 8854, and the �ne block
has 81× 81=6561 lattices. The relaxation times for the coarse- and �ne-grids are �c=0:52
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Figure 13. The x-component of the mass �ux �uy=(�0U ) on the interface AB.

Figure 14. The x-component of the momentum �ux �u2x=�0U 2, on the interface AB.

and �f=0:58, respectively. The average inlet velocity �U is 0.0666. The channel inlet has a
parabolic velocity and is located at 4.0 radii upstream of the cylinder center. A zeroth-order
extrapolation for f� is used at the outlet. The Reynolds number based on the average inlet
velocity and the diameter of the cylinder is Re=100.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:99–120
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Figure 15. The y-component of the momentum �ux �uxuy=�0U 2, on the interface AB.

Figure 16. Shear stress �xy=(	U=H) on the interface AB.

At this Reynolds number, the �ow becomes unsteady and periodic vortex shedding is ob-
served. The numerical value of Strouhal number (St=D= �UT ) is 0.300 and it agrees very
well with the range of values (0.2995–0.305) given in Reference [20]. Here D is the diameter
of cylinder and T is the peak-to-peak period of the lift force which is 500 in lattice unit
based on the coarse block. An instantaneous streamline plot is shown in Figure 18 after the
dynamically periodic solution is established. The variations of the drag and lift coe�cients
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Figure 17. Pressure on the interface AB.

Figure 18. Instantaneous streamlines for channel �ow over an asymetrically placed cylinder at Re=100.

are shown in Figure 19. It is noted that CD(t) has two peaks (CD;max 1 =3:23; CD;max 2 =3:22).
A closer examination of CL(t) reveals that CL(t) is not symmetric with respect to the x-axis
(CL;max =1:01; CL;min =−1:03). This result is reasonable because the �ow is not symmetric
with respect to the horizontal line drawn through the center of the cylinder. The mean ve-
locity of the �ow passing the upper region of cylinder is lower than that passing the lower
region [20]. Careful examination of the computational �ow �led indicates that the local pres-
sure in the upper region is higher than that in the lower region at similar stages of the vortex
shedding. There is no report of the existence of two peaks of CD(t) and asymmetry of CL(t)
in Reference [20]. Only the ranges of CD;max (3.22–3.24) and CL;max (0.99–1.01) were given.
The present results for CD;max and CL;max are well within those ranges.

4.3. Steady �ow over NACA0012 airfoil

The NACA0012 airfoil (Figure 20) is a popular wing model that has been used extensively.
Flow �elds at Re=500; 1000; 2000, and 5000 are computed with the multi-block LBE scheme.
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Figure 19. Unsteady drag and lift coe�cient on the cylinder.
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Figure 20. NACA0012 airfoil.

Figure 21. Block and lattice layout for �ow over NACA0012. The lattice spacing
is reduced by a factor32 for graphical clarity.

Figure 21 shows the entire computational domain and the schematic diagram of the multi-block
arrangement. There are 300 lattices (grids) along the chord in the �nest block. The largest
grid size ratio between neighboring blocks is 4. At the inlet, upper, and lower boundaries,
the equilibrium values are used for fi’s according to Equation (4) based on the free-stream
velocity. At the downstream boundary a zeroth order extrapolation for fi’s is used.
Figure 22 shows the density contour, streamlines and velocity vector of the converged

solution at Re=2000 and zero angle of attack. To investigate the e�ect of grid resolution,
two sets of grid systems are used for the �ow �eld at Re=500: a �ne grid system and a
coarse grid system (with resolution reduced by a factor of 2 in every block). Figure 23 shows
the velocity pro�les at (x− xLE)=L=0:06 where L is the chord length and xLE is the location
of the leading edge. These two sets of velocity pro�le agree well with each other, although
the �ne grid solution appears to have smoother u-component velocity pro�le, as expected.
Figure 24 compares the drag coe�cient Cd between the present LBE simulation and those

calculated from Xfoil, which is a coupled inviscid and boundary layer �ow solver [21]. It can
be seen that two sets of results agree with each other very well for the range of Reynolds
numbers investigated in this study.
It is also noted that at Re=500, the present value of Cd=0:1761 compare very well with

the results reported in Reference [22]: Cd=0:1762 obtained using a Navier–Stokes equation-
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Figure 22. Streamlines, pressure contour, velocity vector for a uniform �ow
over NACA 0012 airfoilat Re=2000.

Figure 23. Grid-independence test of the velocity pro�les near the leading edge at (x − xLE)=L=0:06
for �ow over NACA0012 airfoil at Re=500.

based �nite di�erence method, and Cd=0:1717 using Power�ow code developed by EXA
Corporation, which is based on the lattice Boltzmann equation method. In addition, the present
simulation for the symmetrical �ow at Re=500 gives a lift coe�cient of |CL|¡6× 10−14.
Reference [22] reported CL=1:15× 10−7 using an NS equation-solver and CL=2:27× 10−4
using EXA’s Power�ow code. This suggests that the present multi-block code preserve the
symmetry very well.
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Figure 24. Comparison of Cd between the present simulation and Xfoil calculation as a
function of Re for �ow over NACA0012 airfoil. The straight line is the slope according to

the laminar boundary layer theory.

It is worth pointing out that there is a signi�cant saving in the computational cost using the
multi-block method in LBE simulations. There are three di�erent sizes of grids used for the
NACA0012 airfoil simulation. There are 1025× 129=132 225 �ne grids, 93 200 intermediate
grids with m=4, and 139 628 coarse grids (with m=8 in reference to the �nest grids). This
gives a total of about 3:6× 105 grids in the entire domain. If the �ne grid system is used
in the entire domain, the number of the grids would be Nx ×Ny=5698× 1153∼6:57× 106
which is 18 times more than in the multi-block case. This represents a saving of 18 times
in the memory. Furthermore, since �t= �x= �y in the LBE simulation, one time step in the
coarsest grid system (m=8) requires two time steps in the intermediate grid blocks and eight
steps in the �nest grid blocks. The ratio of the computational e�orts required to carry out a
single-block simulations to that for a multi-block simulation for a given period of physical
time would be

6:57× 106× 8=(132 225× 8 + 93 200× 2 + 139 628)∼38
Clearly, additional saving can be achieved if further blocks of di�erent sizes are used. In
a recent work [23], improvement of the e�ciency and accuracy based on re�ned grid and
variable time step is also demonstrated.

5. CONCLUDING REMARKS

A multi-block strategy is developed for the lattice Boltzmann method. The interface condition
is derived to ensure the mass conservation and stress continuity between neighboring blocks.
The present study demonstrates that the multi-block strategy can greatly improve the compu-
tational e�ciency of the LBE method. Important computational issues, such as conservative
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properties between grid blocks, accuracy assessment with respect to grid re�nement, and the
implications of corner singularities and the Reynolds number, have been addressed. With both
accuracy and e�ciency aspects improved, there is a signi�cant potential for the multi-block
strategy in the LBE method for practical �ow problems.
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